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Abstract

Based on the energy criterion and geometrical nonlinearity theory, this paper broadens conventional concepts of
structural stability to explain some non-generic stability phenomena of pin-jointed bar assemblies in a unified and
coherent way. A novel classification for stability conditions of such kind of structures is put forward, using analysis
of the constitution of the tangential stiffness matrix. Some classical issues, including geometrical stability and stability
of mechanisms, are re-investigated under this new concept as part of the formal theoretical development. Effects of bars
stiffness are introduced into the necessary and sufficient conditions of intrinsic stability (stability of structure devoid of
internal forces). The stability conditions for mechanisms, whether they acquire stiffness from self-stressing or external
loading, are also probed. The stability of infinitesimal mechanism is expounded through consideration of high-order
variations of the potential energy. Some discussions are provided at the end to build up an integrated understanding
of stability of pin-jointed bar assemblies.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural stability is the capability a system possesses to maintain its current equilibrium state.
Although the definition of structural stability is not unique, a simple and intuitively obvious concept can
be expressed (Simitses, 1976) as: ‘‘As the external causes are applied quasi-statically, the elastic structure
deforms and static equilibrium is maintained. If now at any level of the external causes ‘‘small’’ external
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Nomenclature

ak column k of equilibrium matrix (nj � c · 1)
Ak cross-sectional area of bar k
A equilibrium matrix (nj � c · b)
A 0 updated equilibrium matrix (removing column ak out of A) (nj � c · b � 1)
b number of bars in an assembly
bLk linear part of compatibility vector of bar k (1 · 6)
bNL1k nonlinear part of compatibility vector of bar k, including only first-order terms of dk (1 · 6)
B compatibility matrix (b · nj � c)
BL linear part of compatibility matrix (b · nj � c)
BNL nonlinear part of compatibility matrix (b · nj � c)
BNL1 component of BNL only including first-order terms of d (b · nj � c)
c number of kinematic constraints in an assembly
di ith component of d
d vector of nodal displacements (nj � c · 1)
dk vector of nodal displacements of bar k (6 · 1)
e vector of bar elongations (b · 1)
ek elongation of bar k
Ek Young�s modulus of bar k
Fi product–force matrix (nj � c · nj � c)
j number of joints in an assembly
K0 linear elastic stiffness matrix (nj � c · nj � c)
Kd large-displacement stiffness matrix (nj � c · nj � c)
Kg geometrical stiffness matrix (nj � c · nj � c)
KT tangential stiffness matrix (nj � c · nj � c)
L length of bar
Lk initial length of bar k
L0k elongated length of bar k
m number of inextensional mechanisms
mk linear axial stiffness of bar k
m�

k square root of mk

M diagonal matrix of bar stiffness (b · b)
M* diagonal matrix (b · b)
n dimensionality of the structure, 2 or 3 respectively for planar or spatial problem
P concentrated load at node
p vector of external nodal loads (nj � c · 1)
pij product–force vector (nj � c · 1)
q dimension of generalised coordinates
r rank of equilibrium matrix
s number of self-stress states
S diagonal matrix of singular values (nj � c · b)
t vector of bar axial forces (b · 1)
t0 vector of initial bar axial forces (b · 1)
tl vector of initial bar axial forces caused by external loads (b · 1)
ui ith left singular vector (nj � c · 1)
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U matrix containing a set of left singular vectors (nj � c · nj � c)
Ur matrix containing modes of extensional deformation (nj � c · r)
Um matrix containing modes of inextensional deformation (nj � c · m)
vjk a component of V
vi ith right singular vector (b · 1)
V matrix containing a set of right singular vectors (b · b)
Vr matrix containing modes of kinematically compatible extensions (b · r)
Vs matrix of self-stress states (b · s)
ui, vi, wi nodal displacements of joint i
xi, yi, zi Cartesian coordinates of joint i
ai, bj combination coefficients
a, b vector of combination coefficients
c, g parameters
k control parameter
P total potential energy of system
h rotation of bar at its end joints
diag{} symbol of diagonal matrix
o( ) symbol representing high-order terms of variables
r( ) symbol representing rank of a matrix
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disturbances are applied and the structure reacts by simply performing oscillations about the deformed
equilibrium state, the equilibrium is said to be stable.’’

As one important aspect of structural analysis, the foundations of structural stability are usually illus-
trated in conventional text books by a strut system under a compressive force as shown in Fig. 1(a). It
is readily known that such an equilibrium state is conditionally stable, i.e., the vertical strut would buckle
when the compressive force increases to a certain value. On the other hand, if the direction of force is
upwards, but other conditions remain unchanged, see Fig. 1(b), the system is in an unconditionally stable
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Fig. 1. Different equilibrium states for bar assemblies.



4396 H. Deng, A.S.K. Kwan / International Journal of Solids and Structures 42 (2005) 4393–4413
equilibrium state regardless of strength failure. Following this, structural stability depends on the sign (ten-
sile or compressive) and size of the load carried. Clearly, the stability of an equilibrium system is not simply
related to loads alone. If, in the limit, the stiffness of horizontal bar of the assembly shown in Fig. 1(a) tends
to zero, see Fig. 1(c), then the system becomes unconditionally unstable, so the stability of an equilibrium
system must also be affected by member stiffness. Furthermore, although the degeneration of stiffness in the
horizontal bar in Fig. 1(c) can be regarded as removal of this bar, as shown in Fig. 1(d), these two cases are
classified and treated differently. The system in Fig. 1(d) is known from topology to be an unstable equi-
librium because of its variant geometry, and the question of member stiffness never arises.

Although the topic of structural stability could be traced back as early as 1744 to the discussion of a
simple pin ended strut by Euler (Bazant and Cedolin, 1991), research on structural stability has overwhelm-
ingly focused on the effects of external load acting on geometrically perfect (i.e., geometrically invariant)
system. We hardly find discussion on structural stability of an assembly with geometrical imperfection,
because this analysis (also as static–kinematic analysis) is usually treated as a separate topic in structural
mechanics. Undoubtedly, the static–kinematic state of an assembly is an important factor affecting the sta-
bility as shown in Fig. 1(d). However, we should not thereby conclude that geometrical imperfection must
necessarily cause system instability. If the direction of load in the system shown in Fig. 1(d) is reversed, see
Fig. 1(e), the system becomes an unconditionally stable equilibrium state according to the above concept of
structural stability, even though the assembly is still geometrically variant.

In design, it is important to understand which factors are affecting the stability of the structural system,
and what measures to take to avoid instability. However, it may be found from above discussions that there
is no absolute clarity on how the interaction of factors such as loads, member stiffness, geometry of assem-
bly, impact on the structural stability of system. We find that loads acting on a geometrically invariant
assembly can cause system instability, e.g. Fig. 1(a), but sometimes stability seems independent of load,
e.g. Fig. 1(b), and occasionally, loads can even make a geometrically variant assembly stable, e.g. Fig. 1(e).

This paper was primarily motivated by attempt to clarify those unclear phenomena discussed above, and
to find a universal system to categorise the relationships among all the interactive factors affecting the struc-
tural stability. Our investigation is carried out on the simplest of structural types, i.e. pin-jointed bar assem-
blies, and by means of the fundamental tool in structural stability, i.e. energy criterion. The layout of the
paper is as follows.

Energy criterion of structural stability and properties of stiffness matrix will be briefly reviewed in
Section 2. Also, a new analytical expression in vectorial mathematics of the tangential stiffness matrix
(especially the geometric stiffness matrix, and thereby allowing consideration of the geometric nonlinearity)
of pin-jointed bar assembly is developed in this section.

Section 3 will examine the factors affecting the stability through examining the constitution of the tan-
gential stiffness matrix, and a unified classification for stability conditions of pin-jointed bar assembly is
thereby proposed.

In Section 4, the static–kinematic analysis of pin-jointed bar assembly is re-investigated from the view-
point of structural stability. Necessary and sufficient conditions of ‘‘Maxwell�s rule’’ (Maxwell, 1890) as well
as the criterion based on rank analysis of equilibrium matrix (Pellegrino and Calladine, 1986) are probed.
Supplementary effects of bar stiffness to the intrinsic stability (i.e. structural stability regardless of the effects
of internal forces), are also considered. Additionally, a technique for determining ‘‘necessary bars’’ is put
forward and strictly proved. Necessary bars are here defined as bars which if removed, or which if they have
zero stiffness, will cause the system to be intrinsically unstable.

Stability of mechanisms stiffened by self-stress or external loading is discussed in Section 5. Mechanisms
acted by self-stress such as those shown in Fig. 1(f) and (g) have been investigated by eminent scholars over
the last two decades or so (Tarnai, 1980; Calladine and Pellegrino, 1991; Kuznetsov, 1991), motivated by
configurations with singular geometries such as tensegrities (e.g. Calladine, 1978). The term prestressed

mechanism is also given to these assemblies (Pellegrino, 1990). A determination criterion for these systems
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was further developed by Calladine and Pellegrino (1991) based on physical explanations. Section 5 pro-
vides strict theoretical proofs for Calladine and Pellegrino�s criterion, and further irregularities are demon-
strated. Mechanisms stiffened by loads, e.g. Fig. 1(e), are also discussed in this section, and a determination
criterion for such systems similar to that for prestressed mechanisms is proposed.

In Section 6, we discuss further the assemblies which are infinitesimal mechanisms, e.g. Fig. 1(h), the
classification of which is still a matter for debate. From the theory of structural stability and on the basis
of discussions of illustrative examples, it is necessary to carry out analysis of high-order variations of
potential energy to properly show the characteristics of such kind of assemblies.

Some discussions in the last section of this paper are provided with view to enhance an integrated under-
standing of the stability of pin-jointed bar assemblies.
2. Energy criterion and tangential stiffness matrix

2.1. Energy criterion

The question of structural stability may be most effectively answered on the basis of the energy criterion.
The Lagrange–Dirichlet theorem, which demonstrates that an equilibrium position is stable if its potential
energy P is absolute minimal, can be used to ascertain the stability of a conservative system. The potential
energy P is the function of generalised coordinates, such as nodal displacement vector d and control param-
eters k, such as the loading parameter. The increment of potential energy may be expanded into a Taylor
Series about the equilibrium state, and hence:
DP ¼ Pðdþ dd; kÞ � Pðd; kÞ ¼ dP þ d2P þ d3P þ d4P þ � � � ; ð1Þ

in which dP, d2P,. . . are respectively the first, second, . . . variations of the potential energy. They can be
expressed as
dP ¼ 1

1!

Xq

i¼1

oPðd1; . . . ; dq; kÞ
odi

ddi; ð2aÞ

d2P ¼ 1

2!

Xq

i¼1

Xq
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odi odj

ddi ddj; ð2bÞ

d3P ¼ 1

3!

Xq

i¼1

Xq

j¼1

Xq

k¼1

o
3Pðd1; . . . ; dq; kÞ

odi odj odk
ddi ddj ddk . . . ; ð2cÞ
where di is the ith component of d, and q is the dimension of generalised coordinates. The conditions of
equilibrium are
dP ¼ 0 for all dd: ð3Þ
Normally, the second-order variation term d2P is adequate to ascertain the state of stability. If the
expression in Eq. (2b) is given in terms of matrix notation, the equilibrium state of an assembly is
stable if d2P ¼ 1

2
ddTKT dd > 0 for all vectors dd; ð4Þ

critical if d2P ¼ 1

2
ddTKT dd ¼ 0 for one or more vectors dd; or ð5Þ



4398 H. Deng, A.S.K. Kwan / International Journal of Solids and Structures 42 (2005) 4393–4413
unstable if d2P ¼ 1

2
ddTKT dd < 0 for one or more vectors dd; ð6Þ
where KT is the tangential stiffness matrix of system at the current equilibrium state (also called the Hessian
matrix of the total potential energy function (Thompson and Hunt, 1973)). KT also represents the incre-
mental mechanical properties of system characterised by the relationship
KT dd ¼ dp; ð7Þ

where p is the vector of nodal loads.

It can be seen from Eqs. (4)–(6) that the expression for d2P is a quadratic form of KT. From the theory of
linear algebra, the stability of a system in a certain equilibrium state can be further reflected by the prop-
erties of tangential stiffness matrix KT, and in particular, whether KT is of full rank.

It should be noted that the critical case in Eq. (5) requires deeper investigation. In this case, the stability
of system would depend on the nature of higher-order variations of P for those vectors dd which led to
d2P = 0. When d2P = 0 for one or more dd, the system will actually be stable if d3P = 0 and d4P > 0
for all those dd. In special cases, even higher-order variations will have to be examined.

2.2. Basic equations for pin-jointed bar assembly

Throughout the paper, we shall deal with elastic assembly with j joints connected by b pin-jointed bars.
A total number of c kinematic constraints prevent some joints from moving in certain directions. Hence, the
maximum degree of freedom of the assembly is nj � c, where n is 2 or 3 respectively for planar or spatial
problem. Three basic relationships need to be satisfied to guarantee an equilibrium state for an assembly.

By means of virtual works principle, the equilibrium relationship can be expressed as
deTt� ddTp ¼ 0; ð8Þ

where t is the vector of real bar axial forces, de is the vector of virtual bar elongations, and dd is vector of
virtual nodal displacements.

If we regard the bars to be made of material with linear elastic stress–strain relationship, then the con-

stitutive relationship can be expressed in total, and incremental, forms as
t ¼ t0 þMe; ð9Þ

dt ¼ Mde; ð10Þ

where M = diag{m1, . . .,mk, . . .,mb} is a diagonal matrix and mk = EkAk/Lk. Ek, Ak, and Lk are respectively
the Young�s modulus, cross-sectional area and unstrained length of bar k, while t0 is the vector of initial bar
axial forces.

The kinematic vectors d and e have to satisfy the compatibility equation
Bdd ¼ de; ð11Þ

where B is the compatibility matrix of assembly. Eq. (11) is expressed in incremental term to allow for geo-
metric nonlinearity in the analysis of structural stability.

2.3. Geometrically nonlinear compatibility matrix

Consider a bar k as shown in Fig. 2, where the coordinates of its two end joints, i and j, at initial equi-
librium state are (xi,yi,zi) and (xj,yj,zj) respectively. Let the vector of nodal displacements (coordinate
increments) in the deformed equilibrium state be
dk ¼ fui; vi;wi; uj; vj;wjgT: ð12Þ
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Fig. 2. A bar element.
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The lengths of bar k respectively at initial, and deformed, equilibrium states are given by
Lk ¼ fðxi � xjÞ2 þ ðyi � yjÞ
2 þ ðzi � zjÞ2g1=2; ð13Þ

L0
k ¼ fðxi þ ui � xj � ujÞ2 þ ðyi þ vi � yj � vjÞ2 þ ðzi þ wi � zj � wjÞ2g1=2: ð14Þ
Applying series expansion, the elongation of bar k can be obtained by
ek ¼ L0
k � Lk ¼ c þ g=2þ oðd3kÞ; ð15aÞ
where
c ¼ fðxi � xjÞðui � ujÞ þ ðyi � yjÞðvi � vjÞ þ ðzi � zjÞðwi � wjÞg=Lk; ð15bÞ

g ¼ fðui � ujÞðui � ujÞ þ ðvi � vjÞðvi � vjÞ þ ðwi � wjÞðwi � wjÞg=Lk; ð15cÞ

and oðd3kÞ represents the third- and higher-order terms of nodal displacements. Eq. (15a) can be expressed in
vector notation as
ek ¼ ðbLk þ 1
2
bNL1k þ oðd2kÞÞdk; ð16Þ
where
bLk ¼ ð1=LkÞ ðxi � xjÞ; ðyi � yjÞ; ðzi � zjÞ;�ðxi � xjÞ;�ðyi � yjÞ;�ðzi � zjÞ
� �

; ð17Þ

bNL1k ¼ ð1=LkÞ ðui � ujÞ; ðvi � vjÞ; ðwi � wjÞ;�ðui � ujÞ;�ðvi � vjÞ;�ðwi � wjÞ
� �

: ð18Þ

Differentiating both sides of Eq. (16) leads to
dek ¼ ðbLk þ bNL1k þ oðd2kÞÞddk: ð19Þ

With similar relationships for all the bars in assembly, the compatibility relationship of Eq. (11) becomes
Bdd ¼ ðBL þ BNLÞdd ¼ ðBL þ BNL1 þ oðd2ÞÞdd ¼ de; ð20Þ

where BL and BNL are the linear and nonlinear parts of the compatibility matrix respectively, and BNL1 is
the component of BNL including only first-order terms of d. BL is usually named as ‘‘the constraint Jacobian
matrix’’ in conventional static–kinematic analysis (e.g. Kuznetsov, 1991). The exact forms of BL and BNL1

are given below:
ð21Þ
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ð22Þ
It should be noted that BNL1 is a linear function of d, i.e. BNL1(d).

2.4. Analytical expression of tangential stiffness matrix

When de in Eq. (8) is substituted by Bdd (Eq. (11)), and the common factor of ddT (arbitrary and non-
null) is removed, we obtain the equilibrium equation of the system
BTt� p ¼ 0; ð23Þ

and this equilibrium equation is established in the deformed configuration and not the initial configuration,
as opposed to in geometrically linear analysis where B consists only of BL.

We can obtain the variation expression of equilibrium equation from Eq. (23) as
dBTtþ BT dt ¼ dp; ð24Þ

and with Eqs. (10), (11) and (20), Eq. (24) can be expressed as
dðBL þ BNLÞTtþ ðBL þ BNLÞTMðBL þ BNLÞdd ¼ dp: ð25Þ

Since BL is dependent only on the initial assembly geometry, and independent of d, then dBL = 0.
Re-arrangement of Eq. (25) into a brief form and comparing with Eq. (7), we can obtain the analytical
expression of the tangential stiffness matrix of the overall assembly as
KT ¼ K0 þ Kg þ Kd; ð26Þ

where
K0 ¼ BT
LMBL; ð27Þ

Kg dd ¼ dBT
NLt; ð28Þ

Kd ¼ BT
LMBNL þ BT

NLMBL þ BT
NLMBNL: ð29Þ
Consider the tangential stiffness matrix at the initial equilibrium state where d = 0 and t = t0. Since d = 0

in this state, it can be seen from Eqs. (18) and (22) that BNL = 0, and from Eq. (29), Kd is thus also equal to
a null matrix. As for Kg, only the first-order terms in BNL, i.e. BNL1 will remain, and the high-order terms
(which relate to d) are equal to zero. Hence, at the initial equilibrium state of t = t0, the tangential stiffness
matrix can expressed as
KT ¼ K0 þ Kg; ð30Þ
where
Kg dd ¼ dBT
NL1t0 ¼ dBT

NL1ðdÞt0: ð31Þ

The above Eq. (30) is actually the tangential stiffness matrix in updated Lagrangian (UL) formulation in

the theory of nonlinear finite element method. The two parts, K0 and Kg, are usually named as the ‘‘linear
elastic stiffness matrix’’ and ‘‘geometrical stiffness matrix’’ respectively.
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2.5. Static and kinematic properties of BL

The linear part of compatibility matrix, BL, is actually the transpose of the equilibrium matrix A in the
initial equilibrium state (e.g. Pellegrino and Calladine, 1986). A imparts static and kinematical information
of assembly in its initial equilibrium configuration. Two important parameters can be determined from its
rank r: s = b � r is the number of self-stress states; and m = nj � c � r is the number of inextensional
mechanisms.

The value of r can be determined in a number of ways, but the use of ‘‘singular value decomposition
(SVD)’’ (Pellegrino, 1993) on the equilibrium matrix would also give orthogonal sets of m inextensional
mechanisms and s states of self-stress, as follows
A ¼ USVT; ð32Þ

where U = {u1,u2, . . .,unj�c} consists of a set of left singular vectors, V = {v1,v2, . . .,vb} contains a set of
right singular vectors, and a set of singular values is found in the first r non-zero diagonal elements of S.

The singular vectors, all with unit norm, can be grouped into the following sub-matrices
Ur ¼ fu1; u2; . . . urg; Um ¼ furþ1; . . . unj�cg
Vr ¼ fv1; v2; . . . vrg; Vs ¼ fvrþ1; . . . vbg

ð33Þ
which have the following interpretations (e.g. Kumar and Pellegrino, 2000):
Ur contains modes of extensional deformation (i.e. loads that can be equilibrated by the structure in

its current configuration);
Um contains modes of inextensional deformation, i.e. mechanisms (i.e. loads that cannot be equili-

brated);
Vr contains sets of kinematically compatible extensions corresponding, through the singular values, to

the extensional modes in Ur (i.e. bar forces in equilibrium with the external loads in Ur);
Vs contains sets of kinematically incompatible extensions (i.e. states of self-stress).

The subspaces span by U and V have dual statical and kinematical interpretations because the equilib-
rium and compatibility matrices are transposes of each other.
3. Classification for stability conditions of pin-jointed bar assembly

From energy criterion described above, structural stability of a system can be further ascertained from
the properties of its tangential stiffness matrix at the equilibrium state under investigation. Hence, factors
affecting the stability of a pin-jointed bar assembly can be analysed from the constitution of the tangential
stiffness matrix.

From Eq. (27), the linear elastic tangential stiffness matrix K0 relates to two parameters, BL and M. BL is
defined by the geometry (location of joints) and topology (linkage of bars) of the assembly, while M is
related with the axial stiffness of bars. On the other hand, the geometrical stiffness matrix Kg indicates
the effect of initial internal forces on the nodal displacements, and from Eq. (31), Kg has direct relationships
with the internal forces t0 and the first-order nonlinear compatibility matrix BNL1 which is itself dependent
on the geometry of assembly.

The factors which affect the stability of a pin-jointed bar assembly can be concluded as three basic
aspects: geometry and topology of assembly; stiffness of bars; and internal bar forces. It should be noted
that the first two aspects are intrinsic to an assembly, but internal forces are not unique for a system because
they are changeable with external loads or self-stress. The stability conditions of pin-jointed bar assemblies
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can now be classified in terms of the constitution of the tangential stiffness matrix in five separate cases as
follows.

Case 1: if ddTK0dd > 0 and ddTKgdd P 0 (with internal forces) for all dd, then the system is stable.
Case 2: if ddTK0dd > 0 and ddTKgdd = 0 (without internal forces) for all dd, then the system is stable.
Case 3: if ddTK0dd > 0 for all dd, and ddTKgdd < 0 for some dd, but ddT(K0 + Kg)dd > 0 for those dd which

caused ddTKgdd < 0, then the system is stable.
Case 4: if ddTK0dd = 0 for some dd and ddTKgdd > 0 for those same dd, but for all remaining dd,

ddT(K0 + Kg)dd > 0, then the system is stable.
Case 5: if ddT(K0 + Kg)dd = 0 for some dd, and ddT(K0 + Kg)dd > 0 for all remaining dd, the system is in

critical stability. However, if higher-order variations of potential energy for all those dd which
led to ddT(K0 + Kg)dd = 0 are greater than zero, then the system is still stable.

The linear elastic stiffness matrix K0 could not be negative definite (Fung, 1965), i.e. the quadratic form
ddTK0dd cannot be less than zero. In conventional understanding, singularity of K0 (i.e. ddTK0dd = 0 for
some dd) arises from two situations: the deficiency of bar stiffness (e.g. Fig. 1(c)) or the imperfection of
geometry (e.g. Fig. 1(d) or (e)). For an assembly without internal forces (i.e. no contribution from the geo-
metric stiffness matrix Kg), stability analysis is confined to discussion on K0, and this topic is defined as a
problem of ‘‘intrinsic stability’’ in this paper.

Compared to K0, the geometric stiffness matrix Kg is much more ‘‘active’’. Kg may be positive or negative
definite depending on the properties of internal forces. In conventional view, if compressive force is pre-
dominant in an assembly, Kg may become negative definite. On the other hand, Kg may be positive definite
for an assembly in a mainly tensile state. This can be illustrated in Table 1 where we examine the properties
of the tangential stiffness matrices of the assemblies shown in Fig. 1 and roughly determine their stability
according to the five stability conditions above.
Table 1
Stability of equilibratory assemblies shown in Fig. 1

Assembly (see Fig. 1) dd ddTK0dd ddTKgdd Result (criteria yielded)

(a) x1 >0 <0 Conditionally stable (Case 3)
y1 >0 <0

(b) x1 >0 >0 Stable (Case 1)
y1 >0 >0

(c) x1 =0 <0 Unstable (Case 4)
y1 >0 <0

(d) x1 =0 <0 Unstable (Case 4)
y1 >0 <0

(e) x1 =0 >0 Stable (Case 4)
y1 >0 >0

(f) x1 =0 >0 Stable (Case 4)
y1 >0 >0

(g) x1 =0 <0 Unstable (Case 4)
y1 >0 <0

(h) x1 =0 =0 Stable (Case 5)
y1 >0 =0

x1 and y1 denote respectively the displacements of Joint 1 in horizontal and vertical directions.



H. Deng, A.S.K. Kwan / International Journal of Solids and Structures 42 (2005) 4393–4413 4403
In actual fact, Cases 1 and 3 are the traditional topics of structural stability based on a geometrically
perfect assembly. If the effects of bar stiffness are disregarded, Cases 2 is purely an issue of so-called
‘‘static–kinematic analysis.’’ Cases 4 and 5 concern the structural stability of ‘‘mechanism’’ (kinematically
indeterminate assembly). Table 1 shows that the factors which affect the stability of an assembly are
actually interactional. Emphasis of this paper is on the last two groups and we aim to find general rules
to explain the interactions between those parameters.
4. Intrinsic stability

Analysis of intrinsic stability determines the nature of stability of an assembly devoid of internal forces.
This is not a common topic in the discussion of structural stability, but actually it is conventionally inves-
tigated as a ‘‘static–kinematic analysis’’ if the effects of bar stiffness are disregarded. Although ‘‘static–
kinematic analysis’’ is also called ‘‘geometrical stability’’ (e.g. Kuznetsov, 1999, 2000), the majority of such
studies have begun with purely geometrical views, and not from the viewpoint of structural stability.
Research on this issue can be traced back to the work of Maxwell (1890), who defined the static and kine-
matic behaviour of pin-jointed bars system purely by a simple relationship between number of joints, bars
and kinematic constraints. Much later, a more general analysis (Pellegrino and Calladine, 1986) based on
decomposition of the equilibrium matrix emerged, as discussed in Section 2, which takes into account the
geometry and topology of the assembly.

According to the stability condition of case 2 in Section 3, an intrinsically stable system should have
ddTK0 dd > 0 for all dd; ð34Þ

which is equivalent to saying that matrix K0 is positive definite or the rank of K0 is full, i.e., r(K0) = nj � c.
Since the bar stiffness is also related to K0, it must be concerned in the investigation of intrinsic stability of
an assembly. Hence, Pellegrino and Calladine�s approach is insufficient. The linear stiffness matrix K0 in Eq.
(27) can be further factorised as:
K0 ¼ BT
LMBL ¼ AMAT ¼ AðM�M�TÞAT ¼ ðAM�ÞðAM�ÞT; ð35Þ
where M* is also a diagonal matrix whose diagonal elements m�
k ¼

ffiffiffiffiffiffi
mk

p
for k = 1,2, . . .,b.

Since the diagonal elements of matrix M represent the stiffness of the individual bars, they must all be
greater than zero. SinceM* is a diagonal matrix, the product A ÆM* is obtained merely by multiplying each
diagonal element m�

k with its corresponding column in A, and hence the rank of A ÆM* takes its value from
the rank of A. Furthermore, since the rank of a matrix X is same as that of X Æ XT (Jennings, 1977), then
rðK0Þ ¼ r½ðAM�ÞðAM�ÞT
 ¼ rðAM�Þ ¼ rðAÞ ¼ r: ð36Þ

Hence, whether K0 is positive definite can be judged from the rank of equilibrium matrix Anj�c·b. Three
possibilities follow from this.

(i) For b < nj � c, and hence clearly
rðK0Þ ¼ rðAÞ ¼ r 6 b < nj� c: ð37Þ

The assembly has insufficient bars and is thus unstable with a deficient rank of K0. Eq. (37) in fact reflects
Maxwell�s rule (Maxwell, 1890).
(ii) For b P nj � c but r < nj � c, then
rðK0Þ ¼ rðAÞ ¼ r < nj� c; ð38Þ

and the system is also unstable because some of the bars are actually ‘‘ineffective’’ in providing stability.
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(iii) For b P nj � c and r = nj � c then
rðK0Þ ¼ rðAÞ ¼ r ¼ nj� c; ð39Þ

and the matrix K0 is positive definite, so the system is stable.

In the above analysis of pin-jointed bar assembly, the criterion of geometrical stability (since it is irre-
spective of the bar stiffness) is simply whether r = nj � c. However, it should be noted that the analysis
is based on the presumption that the diagonal matrix M of member stiffness is of full rank, which is
undoubtedly regarded to be the case in conventional view. However, in practical numerical structural anal-
ysis, singularity of M may occur in some conditions, such as when the linear stiffness of a bar tends signif-
icantly to zero in magnitude, or even zero because no value has been assigned. Technically, the removal of a
bar (Fig. 1(d)) and setting the axial stiffness of that bar to zero (Fig. 1(c)) belong to different categories. The
former is about geometry, and the latter is physical. Furthermore, the associated mathematical treatments
are also distinct. The two processes, however, produce the same effects on the intrinsic stability of the
assembly. A mathematical explanation demonstrates this.

The equilibrium matrix A ð¼ BT
LÞ of a pin-jointed bar assembly can be written as
A ¼ fa1; a2; . . . ; ak�1; ak; akþ1; . . . ; abg; ð40Þ

where vector ak is kth column of A and represents the equilibrium contribution from bar k. If the bar k is
removed, the equilibrium matrix of the new reduced assembly becomes
A0 ¼ fa1; a2; . . . ; ak�1; akþ1; . . . ; abg: ð41Þ

On the other hand, if the stiffness of bar k is set to zero, i.e. mk ¼ m�

k ¼ 0, but other bars continue to have
non-zero stiffness, then the product A Æ M* contains a null column related to bar k, and therefore A Æ M*
has the same rank as matrix A 0,
rðAM�Þ ¼ rðA0Þ: ð42Þ

There is therefore no difference in the stability of the assembly resulting from either bar removal or setting
the stiffness of the bar to zero.

The conventional view is that the removal of one or two bars in a highly redundant assembly is unlikely
to cause a mechanism. It is also known that while statical redundancy is a good assurance of geometric
stability, it is not a guarantee. Furthermore, even in highly redundant and geometrically stable structures,
the injudicious removal of one bar can lead to a collapse. For a kinematically determinate but statically
indeterminate system, we know the maximum number of bars that could be removed, without triggering
a mechanism, is s. For example, Fig. 3 shows a planar truss with 10 bars, and s = 2. While two bars could
be removed without a kinematic change, we cannot choose them arbitrarily. Some bars, e.g. bars 7, 8 and
10, are crucial for maintaining geometric stability, and we thus define these as ‘‘necessary bars’’ for the
9

3 4 5 6 7 8

10

1 2
1 1

1

Fig. 3. Ten-bar truss.
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assembly. The identity of the necessary bars for a simple structure like that shown in Fig. 3 is not difficult,
but there remains the need of a systematic approach, especially for a complex assembly.

Obviously, one straight forward method for identifying necessary bar is to remove each bar in turn, and
calculate the rank of the new equilibrium matrix A 0 for each modified assembly. However, this approach is
very clumsy and for a complex assembly with many bars, this would be a computationally prohibitive exer-
cise. We hereby present a computationally efficient technique which requires only a single decomposition of
the equilibrium matrix to determine the necessary bars, using the states of self-stress, i.e. Vs in Eq. (33).

The theorem of this technique can be expressed as: ‘‘the necessary and sufficient condition for a bar to be

unconditionally necessary to maintain geometric stability in an assembly is that all the elements in the vectors

of states of self-stress corresponding to that bar are equal to zero’’.
(i) Proof of necessity
Since the states of self-stress is of an assembly found in the null space of A, then by definition
AVs ¼ 0; ð43Þ

which can be expressed in terms of vectors as
fa1; a2; . . . ; ak; . . . ; abgfvrþ1; vrþ2; . . . ; vi; . . . ; vbg ¼ 0; ð44Þ

where vi (for i = r + 1, . . .,b) is a vector of self-stress. Further,
fa1; a2; . . . ; ak; . . . ; abg

vrþ1;1 vrþ2;1 � � � vi;1 � � � vb;1
vrþ1;2 vrþ2;2 � � � vi;2 � � � vb;2

..

. ..
. . .

.
� � � � � � � � �

vrþ1;k vrþ2;k � � � vi;k � � � vb;k

..

. ..
. ..

. ..
. . .

.
� � �

vrþ1;b vrþ2;b
..
.

vi;b ..
.

vb;b

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ 0: ð45Þ
If a whole row of zeros are found in Vs, and the order of columns and rows in Eq. (45) is re-arranged so that
this null row in Vs and its corresponding column in A are moved to the end, then
fa1; a2; . . . ; ak�1; akþ1; . . . ; ab; akg

vrþ1;1 vrþ2;1 � � � vi;1 � � � vb;1
vrþ1;2 vrþ2;2 � � � vi;2 � � � vb;2

..

. ..
. . .

.
� � � � � � � � �

vrþ1;k�1 vrþ2;k�1 � � � vi;k�1 � � � vb;k�1

vrþ1;kþ1 vrþ2;iþ1 � � � vi;kþ1 � � � vb;kþ1

..

. ..
. ..

. ..
. . .

.
� � �

vrþ1;b vrþ2;b
..
.

vi;b � � � vb;b
0 0 0 0 0 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼ 0; ð46Þ
which can then be partitioned and expressed more succinctly as
fA0 j akg
V0

0

� 

¼ 0; ð47Þ
and thus
A0V0 ¼ 0: ð48Þ
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The matrix A 0 in Eq. (48) is actually the equilibrium matrix of the updated assembly after the removal of
bar k, and V 0 is derived from V by deleting row k. It is clear that the columns of V 0 are linearly independent
of each other (since they are formed from the columns of V, which are by definition independent), and this
means that there are at least s = b � (nj � c) non-trivial solutions for Eq. (48), i.e. more than b � (nj � c)
independent self-stress states for the modified assembly. According to the definition of s,
(b � 1) �r(A 0) > s = b � r(A) = b � (nj � c), then r(A 0) 6 (nj � c)�1, and thus m P 1 in A 0, i.e. the new
assembly is geometrically unstable. The presence of a whole row of zeros in Vs is thus a firm indicator
of a necessary bar, the removal of which will cause the resultant assembly to be kinematically
indeterminate.

(ii) Proof of sufficiency
When a necessary bar is removed from a kinematically determinate and statically indeterminate system,

it becomes unstable. This means that the rank of equilibrium matrix of the reduced assembly is now less
than nj � c, i.e. the column in A associated with a necessary bar must be linearly independent of all the
other column. The test that vector ak in equilibrium matrix A contributed by bar k, is linearly independent
of the other columns is actually not difficult in linear algebra.

By definition, the states of self-stress vs is in equilibrium with zero external load, and hence
Avs ¼ 0: ð49Þ

If we consider any one state of self-stress i where i 2 (1, . . ., s), then Eq. (49) can be written in vectorial form
as
v1;ia1 þ v2;ia2 þ � � � þ vk�1;iak�1 þ vk;iak þ vkþ1;iakþ1 þ � � � þ vb;iab ¼ 0: ð50Þ

If we now consider bar k as a necessary bar, then the column in A associated with bar k, ak, must be linearly
independent of all the other columns. Eq. (50) can be re-arranged to move ak to the right hand side, i.e.
v1;ia1 þ v2;ia2 þ � � � þ vk�1;iak�1 þ vkþ1;iakþ1 þ � � � þ vb;iab ¼ �vk;iak; ð50aÞ

so that ak is expressed as a linear combination of all the other columns through factors given by the coef-
ficients vj,i. Since ak is supposed to be linearly independent, then there is no possible combinations of
[a1,a2, . . .,ak�1,ak+1, . . .,ab] that can span the vector of ak, and hence the only possible value of vk,i for
Eq. (50a) to hold is vk,i=0. This conclusion can also be made for any and all of the remaining states of
self-stress. The presence of a whole row of zeros in Vs is thus a sufficient condition to identify a bar as nec-
essary. Further, it should be noted that the necessary bar is bar that cannot maintain self-stress.

For the example shown in Fig. 3, its two states of self-stress are calculated and listed below
v9 ¼ f�0:3755;�0:6318; 0:2563;�0:3625;�0:3625; 0:2563; 0; 0; 0:2563; 0gT;
v10 ¼ f0:6263; 0:3663; 0:2601;�0:3679;�0:3679; 0:2601; 0; 0; 0:2601; 0gT:
It is clear that the zero elements in the two states of self-stress corresponding to bars 7, 8 and 10 show these
are necessary bars.
5. Stability of mechanism

5.1. Basic properties of mechanism

Conventionally, the definition of ‘‘mechanism’’ is from the viewpoint of kinematics whereby assemblies
of pin-jointed bars presenting a kinematical indeterminacy are called mechanisms. Kinematic behaviour of
pin-jointed bar assemblies can be obtained by analysis of the subspaces of compatibility matrix (or equilib-
rium matrix), i.e. Um in Eq. (33).
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Mechanisms belong to geometrically unstable systems, i.e. where m = nj � c � r > 0. As discussed in Sec-
tion 4, the linear elastic stiffness matrix K0 of mechanism will be singular and hence, the quadratic form
ddTK0dd must be equal to zero for some displacements dd.

The fact that the quadratic form takes a zero value dictates the nature of dd associated with mechanisms.
Using the expression for K0 in Eq. (27), ddTK0dd can be expressed as
ddTK0 dd ¼ ddTBT
LMBL dd ¼ ðBL ddÞTMðBL ddÞ: ð51Þ
If the assembly has no bar with zero-stiffness, then M is positive definitive, and the condition for the qua-
dratic form in Eq. (51) taking zero value is that BLdd = 0. That means that the set of compatible displace-
ments dd associated with mechanisms is a linear combination of modes of inextensional deformations (as
discussed in Section 2), i.e.
dd ¼ urþ1brþ1 þ � � � þ unj�cbnj�c ¼ Umb ð52Þ
where b = {br+1,br+2, . . .,bnj�c}
T is a vector of combination coefficients.

We have seen in Section 3 that the geometric stiffness matrix may be used to judge the stability of an
assembly. For a mechanism, the primary condition of stability (Case 4 in Section 3) is that
ddTKg dd > 0 for dd ¼ urþ1brþ1 þ � � � þ unj�cbnj�c: ð53Þ
Since Kg is a function of internal forces t0 (see Eq. (31)), then having a non-zero t0 is a prerequisite to satisfy
ddTKgdd > 0.

Considering Eqs. (31) and (52), Eq. (53) can be further re-written as
ddTKg dd ¼ ddT d½BT
NL1ðdÞ
t0 ¼ bTUT

m½BT
NL1ðUmbÞ
t0 > 0; ð54Þ
where BT
NL1ðUmbÞ signifies that BT

NL1 is a function of Um.
The two ways of generating internal force to stabilise mechanisms are through self-stressing and equilib-

rium with external loads. In the following, we shall discuss these two kinds of stable mechanisms separately.

5.2. Prestressed mechanism

To our knowledge, the term of ‘‘prestressed mechanism ’’ was first used by Pellegrino (1990) to define a
class of singular configurations such as cable nets, tensegrities, etc. A determination criterion for these sys-
tems was primarily developed by Pellegrino and Calladine (1986). Consequent discussions about this crite-
rion (Kuznetsov, 1989; Calladine and Pellegrino, 1991) stimulated improvement of the criterion to the
eventual form:
bT
Xs

i¼1

FT
i Umai

" #
b > 0; ð55Þ
where FT
i is the product–force matrix corresponding to the ith self-stress state.

Eq. (55) implies that prestress can stiffen all m inextensional mechanisms (Pellegrino, 1990). However,
deduction of this criterion has so far been merely from physical explanations based on geometrically linear
analysis and not through a formal theoretical development. An abstract term of ‘‘product force’’, which
represents the out-of-balance force resulting from imposing a mechanism on an assembly with a state of
self-stress, is defined and employed to check the capability equilibrium being restored (cf. Calladine and
Pellegrino, 1991). We hereby offer further explanations on the stability of this kind of mechanisms, and sup-
ply the proof for Calladine and Pellegrino�s criterion, but also demonstrate the extent of its validity.

For an assembly to be a prestressable mechanism, it must have s > 0. A particular pre-tension in an
assembly can be written as a linear combination of the individual states of self-stress
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t0 ¼ vrþ1a1 þ vrþ2a2 þ . . .þ vbas; ð56Þ

where a1,a2, . . .,as are combination coefficients. The expression found in Eq. (54) can be further expressed
as
BT
NL1ðUmbÞt0 ¼

Xm
j¼1

brþjB
T
NL1ðurþjÞ

� �
t0 ¼

Xm
j¼1

brþjB
T
NL1ðurþjÞ

� �Xs

i¼1

aivrþi½ 


¼
Xm
j¼1

brþj

Xs

i¼1

BT
NL1ðurþjÞvrþi

� �
ai

( )
ð57Þ
Defining a matrix Fi = {pi1,pi2, . . .,pim} of ‘‘product forces’’, see Calladine and Pellegrino (1991), where
pij = BNL1

T(ur+j)vr+i, Eq. (57) can be further re-written as
Xm
j¼1

brþj

Xs

i¼1

BT
NL1ðurþjÞvrþi

� �
ai

( )
¼

Xs

i¼1

Fiai

" #
b: ð58Þ
Noting of the symmetry of the product UT
mFi (Calladine and Pellegrino, 1991), Eq. (54) then takes the form
ddTKg dd ¼ bTUT
m

Xs

i¼1

Fiai

" #
b ¼ bT

Xs

i¼1

ðUT
mFiÞai

" #
b ¼ bT

Xs

i¼1

FT
i Umai

" #
b > 0; ð59Þ
which thus proves the criterion (Eq. (55)) given by Calladine and Pellegrino. Although the expression
bT Ps

i¼1F
T
i Umai

� �
b > 0 is an equivalent expression of ddTKgdd > 0, the former expression is the form that

presents a clear description of the effect of feasible self-stress parameters ai in stabilising a mechanism.
From the analysis above, any set of feasible solution a = {a1,a2, . . .,as}

T which satisfies
bT Ps

i¼1F
T
i Umai

� �
b > 0 can stiffen all possible inextensional mechanisms. However, following the stability

condition of Case 4 in Section 3, arbitrarily increasing ai can cause ddT(K0 + Kg)dd < 0 for extensional dis-
placements (i.e. not mechanisms). This unstable phenomenon can be illustrated by the simple prestressed
mechanism shown in Fig. 4, where a sufficiently high level of prestress in the assembly causes buckling
in the compression bar, and thereby resulting in loss of prestress altogether and therefore instigating insta-
bility. This type of instability, however, is akin to stability condition of Case 3 in Section 3, which is not the
primary subject in this paper.

5.3. Loaded mechanism

Self-stress to stiffen mechanisms is only available when there exists non-trivial solutions to the equilib-
rium equation At0 = 0. As mentioned above, external load is another way to stiffen and stabilise a mech-
anism even if the structural geometry is not amenable to prestress, such as the example in Fig. 1(e).

Just as prestress is a linear combination of the independent states of self-stress (Eq. (56)), a set of bar
forces tl in equilibrium external loads must yield
tl ¼ v1a1 þ v2a2 þ � � � þ vrar ð60Þ
-t

t t

A prestressed mechanism in which the uniform state of self-stress involves tension in two bars and compression in the third bar.
ssembly has conditional stability even though Eq. (59) is satisfied (the three bars are supposed to be collinear).
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Fig. 5. Four equilibrium states for a finite mechanism under different external loads.
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where al,a2, . . .,ar are combination coefficients. Similarly, not every tl is capable of stabilising a mechanism.
Fig. 5 shows a finite mechanism under four different equilibrium states. With the external load exciting the
finite mechanism, Case 1 is unstable. Reversing the load directions for Case 2 induces the reverse internal
force, which actually stiffens the finite mechanism so that the assembly is now in stable equilibrium. Cases 3
and 4, however, are not easily judged as to whether they are stable or not. Consequently, a criterion for
determining stability of loaded mechanism will now be developed.

Substituting t0 of Eq. (54) with tl in Eq. (60),
BT
NL1ðUmbÞtl ¼

Xm
j¼1

brþjB
T
NL1ðurþjÞ

� �
tl ¼

Xm
j¼1

brþjB
T
NL1ðurþjÞ

� �Xr

i¼1

½aivi


¼
Xm
j¼1

brþj

Xr

i¼1

BT
NL1ðurþjÞvi

� �
ai

( )
: ð61Þ
Again, defining a matrix Fi = {pi1,pi2, . . .,pim} of ‘‘product forces’’ similar to that of prestressed mechanism,
and pij ¼ BT

NL1ðurþjÞvi, Eq. (61) can be further written as
BT
NL1ðUmbÞtl ¼

Xr

i¼1

Fiai

" #
b: ð62Þ
Substitution of Eq. (62) into Eq. (54) and again noting the symmetry of the product forces UT
mFi, the sta-

bility condition takes the form
ddTKg dd ¼ bTUT
m

Xr

i¼1

Fiai

" #
b ¼ bT

Xr

i¼1

ðUT
mFiÞai

" #
b ¼ bT

Xr

i¼1

FT
i Umai

" #
b > 0: ð63Þ
Although the final form of Eq. (63) appears to be just as Eq. (55) for prestressed mechanisms, it should be
noted that the ‘‘product forces’’, Fi, in the two equations have different meanings.

We can carry out stability analysis of illustrative examples shown in Fig. 5 and prescribe p = 1. Through
SVD on the equilibrium matrix of assembly, the static and kinematic parameters of this assembly can be
obtained as follows:
r ¼ 3; m ¼ 1; s ¼ 0; Um ¼ u4 ¼ f�0:5;�0:5;�0:5; 0:5gT;



Table 2
Stability determination for the four equilibratory systems shown in Fig. 5

Case t0 a1 a2 a3 bT Ps
i¼1F

T
i Umai

� �
b Result

(a) f�
ffiffiffi
2

p
;�1;�

ffiffiffi
2

p
gT 0.2008 0 �2.2270 �1:5b2

4 < 0 Unstable

(b) f
ffiffiffi
2

p
; 1;

ffiffiffi
2

p
gT �0.2008 0 2.2270 1:5b2

4 > 0 Stable

(c) {0,1,0}T 0.8507 0 0.5257 0:5b2
4 > 0 Stable

(d) {0,�1,0}T �0.8507 0 �0.5257 �0:5b2
4 < 0 Unstable

ai are obtained by V�1
r t0.
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V ¼ Vr ¼ fv1; v2; v3g ¼
�0:3717 0:7071 0:6015
0:8507 0 0:5257
�0:3717 �0:7071 0:6015

8<
:

9=
;:
Substituting u4 into Eq. (22), gives
BT
NL1ðu4Þ ¼

� 0:5ffiffiffi
2

p 0 0

� 0:5ffiffiffi
2

p � 1

2
0

0 0 � 0:5ffiffiffi
2

p

0
1

2

0:5ffiffiffi
2

p

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
:

Since m = 1, matrix FT
i Um in Eq. (63) degenerates to a scalar, and can be obtained by
FT
1Um ¼ ðBT

NL1ðu4Þv1Þ
T
Um ¼ 0:1625;

FT
2Um ¼ ðBT

NL1ðu4Þv2Þ
T
Um ¼ 0;

FT
3Um ¼ ðBT

NL1ðu4Þv3Þ
T
Um ¼ 0:6882:
The stability of the four equilibrium systems in Fig. 5 can thus be determined, and the results are as listed in
Table 2.
6. Stability of infinitesimal mechanisms

In kinematic terms, an infinitesimal mechanism is defined as a system that possesses ‘‘virtual mobility’’
but no actual kinematic mobility, i.e. with unique configuration (Kuznetsov, 1999). The simplest example of
an infinitesimal mechanism is the von Mises trusses with collinear pins as shown in Fig. 6. While such
assemblies are classified as ‘‘mechanisms’’ since they have non-zero number of inextensional mechanisms
(i.e. m > 0 just like that of geometrically unstable systems), it is paradoxical that these von Mises trusses
in Fig. 6 are obviously stable according to Simitses� concept (see first paragraph of Section 1) even without
any existence of prestress.
(a) (b)

θ

p

(a) (b)

Fig. 6. von Mises trusses with collinear joints.
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Singular behaviour of infinitesimal mechanisms was attended as early as the works of Maxwell (1890).
Calladine raised the matter again in 1978, talking about the mechanism behaviour of tensegrity structures.
A concept of ‘‘order of infinitesimal mechanisms’’ was also subsequently put forward. In the beginning,
only first-order infinitesimal mechanisms with a single degree of indeterminacy were investigated (Tarnai,
1980; Pellegrino and Calladine, 1986). Later, more complex systems with higher-order infinitesimal mobil-
ity and higher degree of indeterminacy were addressed (Calladine and Pellegrino, 1991; Kuznetsov, 1991).
Koiter (Tarnai, 1989) suggested a general method for evaluating the order of infinitesimal mobility based
on the nonlinear theory of elastic stability, and a formal definition of the order of infinitesimal mechanisms
was formulated by Tarnai (1989). However, understanding of this kind of assembly is not yet fully
consistent.

Since infinitesimal mechanisms have a singular linear elastic stiffness matrix, K0 then regardless of the
possible contribution from the geometrical stiffness matrix, Kg, through internal force effects, only Case
5 of stability conditions (see Section 3) is suitable for judging their stability. This means that higher than
second-order variations of potential energy should be probed.

We illustrate this with the two-bar system shown in Fig. 6(a). A downward force P at the middle joint
causes a vertical nodal displacement (i.e. in the direction of the inextensional mechanism) and the corre-
sponding rotation h of bars. If we take the rotation h as the generalised displacement, the total potential
energy of system can be written as
P ¼ EALð1= cos h � 1Þ2 � PL tan h; ð64Þ

where E, A, and L are respectively the Young�s modulus, cross-sectional area and unstrained length of two
bars.

By differentiating both sides of Eq. (64), the equilibrium relationship of system can be obtained by
oP
oh

¼ 2EALð1= cos h � 1Þ sin h=cos2h � PL=cos2h ¼ 0; ð65Þ
and hence
P ¼ 2EAð1= cos h � 1Þ sin h; ð66Þ

Higher-order variations of P at initial equilibrium state with h = 0 and P = 0 are found as:
d2P
��
h¼0

¼ 1

2!

o
2P

oh2

����
h¼0

� �
dh2 ¼ EALð1� cos3hÞ=cos4h

��
h¼0

h i
dh2 ¼ 0; ð67Þ

d3P
��
h¼0

¼ 1

3!

o
3P

oh3

����
h¼0

� �
dh3 ¼ EAL sin hð2� cos3hÞ=cos5h

�� ��
h¼0

h i
dh3 ¼ 0; ð68Þ

d4P
��
h¼0

¼ 1

4!

o4P

oh4

����
h¼0

� �
dh4 ¼ 1

12
EAL �28cos2h � 12cos3h þ 7cos5h þ 36

� �
=cos6h

� �����
h¼0

� �
dh4

¼ 1

4
EALdh4 > 0: ð69Þ
Hence, according to the energy criterion of structural stability given in Section 2, although d2P = 0, this
infinitesimal mechanism is still stable because d3P = 0 and d4P > 0.

Analysis of higher-order variation of potential energy should thus be carried out to reveal the singular
nature of infinitesimal mechanisms, and knowledge of second-order variation d2P alone is obviously insuf-
ficient. Salerno (1992) has numerically investigated more complex infinitesimal mechanisms from the view-
point of structural stability. However, analysis of higher-order variation of potential energy is more
complicated than that of d2P. While d2P is only a quadratic form, and its properties can be obtained
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through analysis of the stiffness matrix by means of conventional theory of linear algebra, higher-order
variations of potential energy demand much more difficult analyses.

It should be noted that Kuznetsov (1999, 2000) presented a novel perspective about the physical realis-
ability and exact computability of such singular system based on mathematic concepts of structural stability
(unrelated to structures). In his viewpoints, as the degenerated configurations of geometrically invariant or
variant systems, infinitesimal mechanisms are always sensitive to the minute changes of control parameters
such as linear and angular sizes of the structural members (i.e. lengths of bars for pin-jointed bar assem-
blies). It means that any infinitesimal changes of lengths of bars, e.g. those in Fig. 6, will essentially lead
those assemblies to be geometrically invariant (Fig. 6a) or variant (Fig. 6b). Considering the exact values
of control parameters can never be known in both real situation and numerical calculation, unprestressed
or unprestressable first-order mechanisms and all higher-order infinitesimal mechanisms are concluded to
be physically unrealisable and noncomputable except for symbolic or integer calculations. The only phys-
ically realizable configuration is first-order infinitesimal mechanisms possessing prestress of finite magni-
tude as those discussed in Section 5, in consideration that physical prestress can override all geometric
imperfections, including lack of precision in the member sizes and in the process of assembly.

Although research on infinitesimal mechanisms is still a formidable problem in spite of their realisability
and computability, use of the theory of structural stability is undeniably the best way to recognise and clas-
sify this kind of singular assemblies. At the very least, we are able to theoretically see that the stability con-
dition for prestressed infinitesimal mechanism is obviously different to that without internal forces. The
former lies in discussions of second-order variation of potential energy, but the latter depends on the
higher-order.
7. Discussion

Geometry and topology of assembly, stiffness of members and internal forces are three aspects all affect-
ing the stability of an equilibratory system. Conventional analysis of structural stability is mostly focused
on effects of internal forces, but does not regard the first two factors. On the other hand, ‘‘static-kinematic’’
analysis does not usually treat the issue of stability. All three factors have been considered at the same time
in this paper.

From the viewpoint of energy criterion, intrinsic stability of assembly is equivalent to having a positive
definitive linear elastic stiffness matrix for the assembly. It should be noted that Maxwell�s rule and the cri-
terion based on equilibrium matrix are insufficient, since they ignore effects of member stiffness. However, if
there is not a bar with zero stiffness in assembly, the rank of the equilibrium matrix can perfectly reflect the
properties of linear elastic stiffness matrix, whether it is positive definite or not. As a supplementary,
this paper takes a close look at the effects of member stiffness, which is usually neglected, to the intrinsic
stability of system, and mathematically shows the equivalence between removal of bar and zero stiffness
of the same bar. Furthermore, investigations of ‘‘necessary bar’’ extends for the first time the analysis of
‘‘intrinsic stability’’ from ‘‘assembly’’ level to ‘‘member’’ level.

Stability of mechanisms cannot be comprehended properly without treating the three aspects affecting
stability of assembly and considering their interactions. Effective stabilisation of mechanisms comes
through reinforcement from internal forces, which are not only caused by self-stress but can also arise from
loading. The stability criterion of prestressed and loaded mechanisms can be proven and understood from
energy criterion and the analytic expression of the tangential stiffness matrix. If stability from prestress is
well illustrated by those prestressable structures such as cable nets or tensegrity systems, then the simple
suspended cable roof under heavy dead loads can be regarded as an equally good example of a loaded
mechanism. In fact, such suspended systems rely on the stability due to heavy dead load to sustain change-
able live loads effectively.
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In many cases, properties of the second-order variation of potential energy are adequate to show
the behavior of stability. However, for stability of infinitesimal mechanisms devoid of internal forces,
higher-order variations of potential energy must be investigated. Hence, it is clear that stabilities of infin-
itesimal mechanisms with, and without, internal forces are fundamentally different in mathematical terms.
Furthermore, studies on stability of infinitesimal mechanisms cannot be conclusive if the focus is only on
second-order variation of potential energy.

Undeniably, nonlinear theory of structural stability has explained many non-generic stability phenom-
ena in this paper, which will be helpful to establish a unified classification of stability of pin-jointed bar
assemblies.
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